黄文誉,伍荣生. 2009. 最优差分方案[J]. 气象学报, 67(6):1069-1079, doi:10.11676/qxxb2009.103
最优差分方案
An optimum scheme for finite difference
  
DOI:10.11676/qxxb2009.103
中文关键词:  差分逼近程度,平滑,频谱,中短波,累积误差
英文关键词:Difference accuracy, Smoothing, Frequency spectrum, Short and middle wave, Cumul ative error
基金项目:公益性行业(气象)科研专项(GYHY200706033),国家自然科学基金(4 0333025),上海台风研究基金(2006STB04)
作者单位
黄文誉 南京大学大气科学系中尺度灾害性天气教育部重点实验室南京210093 
伍荣生 南京大学大气科学系中尺度灾害性天气教育部重点实验室南京210093 
摘要点击次数: 3076
全文下载次数: 2970
中文摘要:
      在数值预报和数值模拟中,描述空间微分项的最主要的方法是有限差分法,但使用差分方法 会引入截断误差。伍荣生1979年指出,通过在原物理场的基础上构造一个新的物理场,替代 原物理场进行差分计算,可以达到减小误差的目的。该文是伍荣生1979年工作的继续,目的 在于解释伍荣生1979年所构造的差分格式并得到更为一般化的差分格式。文中给出新的差分 格式结合了经典有限差分方法的快速计算和谱方法的高精度的优点。如果在一个给定的网格 上对气象要素场进行离散傅里叶级数展开,则基函数(正弦或余弦)的频谱是事先已知的。作 者将伍荣生1979年构造物理场的方法视为对物理场的一次平滑,探讨了获取二次平滑场、 多次平滑的一般化方法。获取平滑场的基本原理是使得在固定频谱上的差分逼近程度 达到最优。通过对频谱上的累计误差的下降速度分析表明,平滑次数的上限为3次。数值分 析的结果表明,二次平滑的最大误差是未作任何平滑的最大误差的0.04倍,在使用相同计算 代价的情况下,二次平滑的最大误差是经典的差分格式的0.3倍。平流试验的结果也表明, 新的差分格式即一次平滑、二次平滑方案的结果远远优于经典的差分格式。新的差分格式意 义在于,在不加密网格的情况下提供了一条提高数值计算精度的途径。
英文摘要:
      In numerical prediction and numerical modeling, the general method to describe d ifferential term in space is finite difference method, however, the using of fin ite difference method will introduce truncation error. Wu (1979) proposed that i n order to improve the accuracy of difference term, a new field was constructed to replace the original physical field in the difference term. This paper is a s ister paper of Wu (1979), the main purpose is to interpret the value of Wu (1979 ), and furthermore to give some more general difference themes. The difference t heme in this paper combines both the advantages of finite difference method (fas t calculating) and the spectral method (high accuracy). If a discrete Fourier ex pansion is made on a given grid, the frequency spectrum of the base function (si ne or cosine) is fixed. In this paper, the generalized method of finding a 2 or der (or more times) smoothing field is explored. The fundamental philosophy to o btain the smoothing field is making an optimum approximation at the fixed freque ncy spectrum. The upper threshold of smoothing was determined as 3 through obser ving the decreasing speed of the cumulative error of the frequency spectrum. The results of the numerical analysis reveal that the maximum error of the 2 order smoothing scheme is 0.04 of the classical scheme without any smoothing and 0.3 of the classical scheme with the same computation cost. The advection experiment also suggests that the new scheme is far more excellent than the classical sch eme. The new difference scheme supplies a new road which improves the accuracy o f numerical calculating without adding the grids. 
HTML   查看全文   查看/发表评论  下载PDF阅读器
分享按钮