朱蒙,陈海山,蒋薇,谭桂容. 2014. 陆面热力因子应用于中国夏季降水预测的初步试验[J]. 气象学报, 72(6):1135-1142, doi:10.11676/qxxb2014.062
陆面热力因子应用于中国夏季降水预测的初步试验
A preliminary test of the summer rainfall prediction in China based on the land surface thermal factors
投稿时间:2013-12-13  修订日期:2014-05-21
DOI:10.11676/qxxb2014.062
中文关键词:  夏季降水  季节预测  土壤温度  典型相关分析  集合典型相关分析
英文关键词:Summer precipitation  Seasonal prediction  Soil temperature  Canonical Correlation Analysis (CCA)  Ensemble Canonical Correlation Analysis (ECC)
基金项目:科技部公益性行业(气象)科研专项(GYHY201206017)、国家自然科学基金(41230422)、江苏省自然科学基金-杰出青年基金项目(BK20130047)、"新世纪优秀人才支持计划".
作者单位E-mail
朱蒙 南京信息工程大学气象灾害预报预警与评估协同创新中心, 气象灾害教育部重点实验室, 南京, 210044
南京信息工程大学, 大气科学学院, 南京, 210044 
 
陈海山 南京信息工程大学气象灾害预报预警与评估协同创新中心, 气象灾害教育部重点实验室, 南京, 210044
南京信息工程大学, 大气科学学院, 南京, 210044 
haishan@nuist.edu.cn 
蒋薇 江苏省气候中心, 南京, 210008  
谭桂容 南京信息工程大学气象灾害预报预警与评估协同创新中心, 气象灾害教育部重点实验室, 南京, 210044
南京信息工程大学, 大气科学学院, 南京, 210044 
 
摘要点击次数: 2292
全文下载次数: 1950
中文摘要:
      基于对中国东部夏季降水与欧亚大陆土壤温度和全球海表温度的相关分析,选取不同关键区的土壤温度和海表温度作为夏季降水的预测因子.利用1961—1990年的资料,分别以土壤温度作为第1组预测因子,海表温度作为第2组预测因子,综合海表温度与土壤温度因子作为第3组预测因子,使用改进的典型相关分析和集合典型相关分析法对中国东部夏季降水场进行预测,建立了相应的预测模型.然后,利用1991—2010年的资料进行了独立样本预测试验.在独立样本预测试验中,综合海表温度与土壤温度因子建立的模型比只用海表温度进行预测的各项预测评分高,说明加入土壤温度因子后预测效果有所提高.基于陆面热力因子的预测模型对夏季降水有一定的技巧,而综合海温与陆面热力因子的预测模型对中国东部夏季降水有较高的预测能力.
英文摘要:
      Based on the correlation analysis between the April soil temperature (ST) over the Eurasian continent, the global sea surface temperature (SST) in the previous winter and the summer precipitation in eastern China, STs and SSTs over the key regions are selected as the predictors of the summer rainfall prediction. Based on the observations during the period 1961-1990, the Barnett-Preisendorfer canonical correlation analysis (BP-CCA) and the ensemble canonical correlation analysis (ECC) are used to build statistical prediction models of the summer rainfall in eastern China with taking ST, SST or SST combined with ST as the predictors, respectively. The independent sample test is performed by using the observations during 1991-2010. The results show that the model using SST combined with ST as predictor exhibits higher predictive skill than that only using one of them, implying that consideration of the ST improves the performance of the prediction model. The prediction model based on the land surface thermal factors has some skills in predicting the summer precipitation in eastern China, and the way using the combination of SST with ST shows a better performance in the summer precipitation prediction.
HTML   查看全文   查看/发表评论  下载PDF阅读器
分享按钮