蒙伟光,张艳霞,吴亚丽,徐道生,陈德辉. 2019. 季风槽环境中暴雨MCSs的分析与数值预报试验[J]. 气象学报, (0):-, doi:10.11676/qxxb2019.069
季风槽环境中暴雨MCSs的分析与数值预报试验
Analysis and numerical prediction experiment of rainstorm MCSs in a monsoon trough environment
投稿时间:2019-02-22  修订日期:2019-04-30
DOI:10.11676/qxxb2019.069
中文关键词:  季风槽暴雨,中尺度对流系统(MCSs),诊断分析,数值预报试验,对流参数化方案,“灰色区分辨率”
英文关键词:Monsoon  trough rainstorm, Mesoscale  convection systems (MCSs), diagnostic  analysis, Numerical  prediction experiments,Convective  parameterization scheme,“Grey-zone  resolution”
基金项目:广东省科技计划项目(2017B020244002)、国家自然科学基金面上项目(41275053、41505039)
作者单位E-mail
蒙伟光 中国气象局广州热带海洋气象研究所 wgmeng@grmc.gov.cn 
张艳霞 中国气象局广州热带海洋气象研究所 yxzhang@cma.gov.cn 
吴亚丽 中国气象局广州热带海洋气象研究所 wuyl@grmc.gov.cn 
徐道生 中国气象局广州热带海洋气象研究所 dsxu@grmc.gov.cn 
陈德辉 国家气象中心-数值预报中心 chendh@cma.gov.cn 
摘要点击次数: 299
全文下载次数: 
中文摘要:
      应用地面降水观测资料、卫星云图、雷达回波以及NCEP再分析资料,文章对2011年6月底华南沿海受季风槽影响下发生的一次持续性暴雨的中尺度对流系统(MCSs)进行分析,并探讨了采用数值模式对MCSs降水进行预报的可能性。分析表明暴雨由多个相继发展的MCSs造成。在相似环境中,不同MCSs发展形态和水平尺度有较大差异,最大可组织发展成中α尺度MCC,但一般为中β尺度线状或带状对流系统。对其中两个发展形式分别表现为椭圆形MCC(MCS-2)和带状中β尺度MCSs(MCS-4)的对比分析发现,两个MCSs对流的起始发展均发生在夜间,与季风槽南侧低空急流上南风的脉动有良好对应关系,表明季风槽及急流的向北推进对MCSs对流的触发有重要影响。基于临近探空资料诊断结果指出,被认为对MCSs组织发展有较好指示作用的关键物理量如CAPE(对流有效位能)和风垂直切变难于区分不同MCSs的发展形态和趋势,用于诊断的探空资料的代表性将影响诸如“配料法”等暴雨客观预报方法的建立和应用。利用华南区域中心GRAPES_GZ模式系统对两个MCSs进行的模拟预报结果表明,3km水平分辨率模式可以更好的预报出暴雨的发生,但结果对是否仍调用CP(对流参数化)方案敏感。尽管不依靠CP方案模式能够较好地预报出MCSs初始降水的发生,但会过度预报MCSs发展成熟后的降水。模式如何描述MCSs对流的组织发展机制、如何处理CP方案的“灰色区分辨率”问题仍需要仔细进行考虑。
英文摘要:
      Using ground based precipitation data, satellite images, radarSechoSandSNCEPSreanalysisSdata, this study analyzes the characteristics of MCSs(Mesoscale Convection Systems)in a continuous rainstorm happened in the end of June 2011 and over the coastal areas of South China within a monsoon trough, and investigates the possibility of using a numerical model to explicitly predict the MCSs precipitation. The analysis shows that the rainstorm was caused by a number of successive MCSs. In similar environments, these MCSs developed intoSdifferentSmodes and horizontalSscales, with the maximum could be organized into a meso-α scale MCC, but generally a meso-β scale linear or banded convective system. Comparative analysis of two MCSs respectively presented as quasi-circular MCC (MCS-2) and banded MCS (MCS-4) found that both of the convection in two MCSs began develop at night and presented a correlation with the southerly wind pulsation in the low-level jet over the southern side of monsoon trough, meaning that the northward shift of monsoon trough and low-level jet might play an important role on triggering the convection. Based on examinationSof the observedSproximitySsounding, results reveal that diagnostic variables such as convective available potential energy (CAPE) and vertical wind shear, which are considered to be good ingredients for MCSs precipitation prediction, are difficult to distinguish the modes and the evolutional tendencies of different MCSs. The representativeness of sounding using to derive these quantities will restrict the application of forecasting tools established by approach such as “ingredients-based method”. Prediction simulation with GRAPES_GZ model from the Southern China Regional Meteorological Center shows that the 3km resolution model can better predict the occurrence of MCSs rainstorm, but are sensitive to running the model with or without CP (convective parameterization) scheme. Though running without CP scheme could better predicted the earlier stages of rainfall in both MCSs, it would produce over-predict precipitation as the MCSs evolved into their mature stages. How to describe the organization mechanism of convection in MCSs and how to deal with problems of CP scheme in “grey-zone resolution” must need to be considered carefully.
查看全文   查看/发表评论  下载PDF阅读器
分享按钮